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Abstract 
 

The infiltration of dense non-aqueous phase liquids (DNAPLs) into the saturated subsurface 

typically produces a highly contaminated zone that serves as a long-term source of dissolved-phase 

groundwater contamination.  Applications of aggressive physical-chemical technologies to such source 

zones may remove greater than 90% of the contaminant mass under favorable conditions.  The 

remaining contaminant mass, however, can create a rebounding of aqueous-phase concentrations 

within the treated zone.   Stimulation of microbial reductive dechlorination within the source-zone 

following aggressive mass removal has recently been proposed as a promising staged-treatment 

remediation technology for transforming the remaining contaminant mass.  This work reviews 

available laboratory and field evidence that supports the development of a treatment strategy that 

combines aggressive source-zone removal technologies with subsequent promotion of sustained 

microbial reductive dechlorination.  Physical-chemical source-zone treatment technologies compatible 

with post-treatment stimulation of microbial activity are identified, and studies examining the 

requirements and controls (i.e., limits) of reductive dechlorination of chlorinated ethenes are 

investigated.   Illustrative calculations are presented to explore the potential effects of source-zone 

management alternatives.  Results suggest that, for the favorable conditions assumed in these 

calculations (i.e., statistical homogene ity of aquifer properties, known source-zone DNAPL 

distribution, and successful bioenhancement in the source-zone), source longevity may be reduced by 

as much as an order-of-magnitude when physical-chemical source-zone treatment is coupled with 

reductive dechlorination. 
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Introduction 

Wide-spread use of chlorinated solvents in dry cleaning and metal degreasing operations over 

the last century resulted in extensive groundwater contamination by compounds such as 

tetrachloroethene (PCE) and trichloroethene (TCE).  When released into the subsurface as dense 

nonaqueous phase liquids (DNAPLs), chlorinated solvents tend to migrate downward through the 

unsaturated zone, and can penetrate the water table due to their higher density (Mercer and Cohen 

1990).  During DNAPL migration, hysteretic capillary forces cause retention of a portion of the liquid 

within the pores as discontinuous globules or ganglia (EPA 1990; Lenhard et al. 1989; Schwille 1988).  

Substantial DNAPL volumes can also be retained due to the presence of nonuniform soil texture, 

which may result in DNAPL pooling (i.e., zones of DNAPL at much higher saturation) above layers or 

lenses of lower-permeability media (Dekker and Abriola 2000; Essaid and Hess 1993; Saenton et al. 

2002; Schwille 1988;).  The resulting distribution of DNAPL is, thus, typically complex and non-

uniform (Figure 1).  Entrapped DNAPL mass tends to dissolve slowly into flowing water, serving as a 

long-term source of groundwater contamination (Mackay and Cherry 1989; Schwille 1988).  The 

implementation of conventional pump-and-treat remediation for such DNAPL source zones has been 

ineffective in reducing contaminant concentrations to regulatory endpoints in acceptable time frames 

(EPA 1996; MacDonald and Kavanaugh 1994; Travis and Doty 1990)  

A number of innovative technologies have been developed to enhance contaminant removal 

from DNAPL source zones (NRC 1994, 1997, 1999).  Although these technologies are capable of 

substantial mass removal under favorable conditions, some DNAPL will likely remain within the 

porous medium even when treatment is most effective (Fountain et al. 1995; Sale and McWhorter 

2001).  This remaining contaminant mass can continue to serve as a source of down-gradient 

contamination, and thus further source-zone treatment or containment may be required.  Despite a 

number of successful field-scale demonstrations  of aggressive source-zone treatment technologies, 

skepticism and concern remains that application of such technologies may not substantially reduce risk 



 6 

and could potentially worsen site conditions (e.g., through mobilization and redistribution of DNAPL, 

enhanced transport of metals, elimination of microbial activity, or increased aqueous-phase 

concentration of contaminants following treatment) (Cherry et al. 1997; Oostrom et al. 1999).  From 

this perspective, some authors have suggested that source containment (i.e., treatment or mitigation of 

down-gradient contamination emanating from DNAPL sourcezones) is preferable to aggressive 

physical-chemical source-zone treatment (Cherry et al. 1997; Freeze 2000; Freeze and McWhorter 

1997; Kent and Mosquera 2001). 

Freeze (2000) advocates a new remediation paradigm in which only source containment is 

implemented due to the technical impracticability of removing sufficient DNAPL mass to reduce 

contaminant concentrations to drinking water standards.  In contrast, guidelines put forth by the 

Interstate Technology and Regulatory Cooperation (ITRC) work group, a team comprised of state and 

federal regulators, call for aggressive source-zone remediation (Jackson 2001).  The latter 

recommendation is based in part on the contention that mass removal from a source zone, even if 

incomplete, will result in (1) a reduction in mass flux, (2) a reduction in source longevity, (3) a 

reduction in risk, and (4) a potential enhancement in post-treatment biodegradation (Jawitz et al. 2000; 

Londergan et al. 2001; Martel et al. 1998; Rao et al. 2002; Yang and McCarty 2003).  Recent 

analytical and numerical modeling investigations suggest that partial source-zone removal may result 

in significant (several orders-of-magnitude) reductions in post-treatment contaminant mass flux 

(Lemke and Abriola 2003; Rao et al. 2002; Rao and Jawitz 2003).  While a reduction in mass flux may 

not eliminate the need for further treatment, it could reduce concentrations to levels where microbial 

transformation of the dissolved phase chlorinated solvents becomes feasible (Adamson et al. 2003; 

Nielsen and Keasling 1999; Sung et al. 2003; Yang and McCarty 2000).  Biostimulation of source-

zone microbial dechlorination activity may achieve attenuation of contaminant mass flux to levels that 

achieve regulatory compliance (i.e., a flux averaged concentration) at a down-gradient well.   
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Thus, combination of physical-chemical source-zone treatment and post-treatment 

bioremediation may be an attractive remediation alternative, resulting in reduced source longevity and 

contaminant mass flux (de Blanc et al. 1997; Rao et al. 2002; Zoller 1998; Zoller and Rubin 2001).  

Coupling a physical-chemical remediation process that removes significant contaminant mass with a 

bioremediation “polishing step” to control the contaminant mass flux emanating from remaining 

DNAPL may provide a synergism that cannot be obtained with existing remediation strategies.  Such a 

staged treatment approach could leverage initial high removal efficiencies of physical-chemical source-

zone treatment methods to minimize time to site closure.  This  sequential treatment approach should 

not be confused with natural attenuation, a remediation approach that is generally associated with 

bioremediation of low contaminant concentrations in a groundwater plume (Wiedemeier et al. 1999), 

nor should it be confused with the recent work on source-zone bioremediation, which relies solely on 

biotic processes to transform source-zone contamination (e.g., Adamson et al. 2003).              

Observations from longer term monitoring at sites where innovative flushing technologies have 

been implemented suggest that tailoring physical-chemical treatment to enhance post-treatment 

bioremediation efforts is feasible (Abriola et al. 2003; Mravik et al. 2003; Ramsburg et al. submitted-

b).  Application of such a staged treatment methodology, however, would require a thorough 

understanding of both physical-chemical treatment technologies and source-zone bioremediation.  The 

objective of this paper is to review and integrate knowledge gained from recent demonstrations of 

field-scale source-zone remediation with that from laboratory investigations of solvent 

biotransformation to assess the potential promise of technology coupling.  This work differs from 

published reviews of specific technologies (e.g., Bradley 2003; Henry et al. 2003) in its focus on the 

influence of physical-chemical treatment technologies on post-treatment microbial reductive 

dechlorination.  A technology assessment is provided and recommendations for future work are 

presented.  Although some observations may be generally applicable to any DNAPL site, the focus 
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herein is on sites where source-zone contamination is comprised in large part of chlorinated solvents 

(e.g., PCE, TCE).  

 

Chlorinated Ethene Biodegradation 

The degradation of chlorinated ethenes in microcosms and the detection of degradation 

products at contaminated groundwater sites in the 1980’s inspired researchers to investigate biotic and 

abiotic transformation processes (McCarty and Semprini 1994; Vogel and McCarty 1985; Vogel et al. 

1987).  As early as 1980, researchers identified links between microbial metabolism and the 

destruction of chlorinated hydrocarbons (Higgins et al. 1980).  As more work was completed, 

researchers recognized that oxidation or reduction of chlorinated hydrocarbons under different redox 

conditions is feasible (Table 1).  The following discussion briefly reviews microbial dechlorination 

processes that can occur in the subsurface and identifies those processes that are most promising for 

stimulation in a source zone following active mass removal.  For a more thorough discussion of 

chloroethene biodegradation see reviews by Bradley (2003), Holliger (1995), Janssen et al. (2001), 

Semprini (1997, 2001), or Smidt and de Vos (2004).   

Although oxidation of chlorinated hydrocarbons in both aerobic and anaerobic environments 

has been demonstrated (Bradley et al. 1998; Bradley and Chappelle 1996; Coleman et al. 2002a, 

2002b; Hartmans et al. 1985; Hartmans and deBont 1992; Singh et al. 2004; Verce et al. 2000, 2001), 

aerobic metabolic oxidation is a productive pathway only for removal of lesser chlorinated ethenes 

(i.e., cis-DCE and VC).  No organisms that grow aerobically with PCE or TCE as a carbon source have 

been identified.  In anoxic environments, the metabolic oxidation of chloroethenes is still poorly 

understood.  Although the mineralization of cis-DCE and VC under iron- and manganese-reducing 

condition has been demonstrated (Bradley et al. 1998; Bradley and Chapelle 1996), the relevance of 

this process for bioremediation has yet to be established.  Cometabolism is an alternative non-

metabolic process that has been shown to transform contaminants in both aerobic and anaerobic 
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environments (Anderson and McCarty 1997; Chauhan et al. 1998; Ensign et al. 1992; Hopkins et al. 

1993; Ryoo et al. 2001; Shim et al. 2001).  Aerobic cometabolism can act on all chloroethenes (Ryoo 

et al. 2001; Shim et al. 2001), however the need for a primary substrate such as methane or toluene, 

and the fact that the degradation of the target compounds can only be indirectly controlled, are major 

drawbacks of this approach.  Anaerobic cometabolic reductive dechlorination of PCE has been 

observed under methanogenic (Fathepure and Boyd 1988a, 1988b), acetogenic (Terzenbach and Blaut 

1994), and sulfidogenic conditions (Cole et al. 1995).  However, due to low rates and incomplete 

dechlorination, this process is least likely to contribute to detoxification of contaminated subsurface 

environments.  More recently, chlororespiration, a process in which chlorinated compounds serve as a 

metabolic electron acceptor for energy generation, has been demonstrated (Holliger et al. 1998; Löffler 

et al. 1996, 1999; Smidt and de Vos 2004).  The metabolic reductive dechlorination pathway 

(chlororespiration) is a strict anaerobic process that requires an electron donor (i.e., source of reducing 

equivalents).  The chlororespiratory pathway is promising in that it can lead to efficient dechlorination 

to ethene and achieve complete detoxification (He et al 2003a, 2003b). 

 The ability to use chloroethenes as energy-yielding electron acceptors is distributed among 

several bacterial groups including different subdivisions of the proteobacteria, the gram-positive 

bacteria, and the Chloroflexi (formerly green non-sulfur bacteria).  Organisms capable of metabolic 

reductive dechlorination (i.e., chlororespiration) have been isolated from contaminated and pristine 

sites (Smidt and de Vos 2004).  These populations are generally strict anaerobes, with only 

Enterobacter strain MS-1 exhibiting facultative metabolism (Sharma and McCarty 1996).  Bacterial 

populations capable of gaining energy from reductive dechlorination of chloroethenes have been 

classified into a number of phylogenetic groups including Dehalobacter, Sulfurospirillum, 

Desulfuromonas, Desulfitobacterium, Clostridium, and Dehalococcoides (Bradley 2003; Löffler et al. 

2003; Smidt and de Vos 2004).  This broad range of organisms capable of chlororespiration is 

encouraging for post-treatment bioremediation; however, the majority of these organisms are incapable 
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of complete dechlorination of chloroethenes to ethene (Löffler et al. 2003; Major et al. 2003).  At many 

sites, dichloroethenes (primarily cis-DCE), and in some cases vinyl chloride (VC), accumulate.  

Cupples et al. (2004) recently demonstrated dechlorination of cis-DCE and VC, but they identified a 

minimum threshold chlorinated contaminant concentration below which dechlorination could not be 

sustained.  There is an apparent link between the presence of members of the Dehalococcoides group 

and complete dechlorination (i.e., ethene formation) (Cupples et al. 2003; He et al. 2003a, 2003b;  

Hendrickson et al. 2002; Maymo-Gatell et al. 1997, 2001; Ritalahti et al. 2001).  Dehalococcoides 

ethenogenes strain 195 was the first isolate described to dechlorinate PCE to ethene but the last 

dechlorination step, VC to ethene, was cometabolic and slow (Maymo-Gatell et al. 1997).  A major 

breakthrough was the isolation of Dehalococcoides sp. strain BAV1, the first isolate capable of using 

all dichloroethene isomers and VC as growth-supporting electron acceptors (He et al. 2003a, 2003b).   

 While it was originally believed biotransformation processes could not occur near a chlorinated 

solvent source zone due to the toxicity of high contaminant concentrations associated with the presence 

of NAPL (Abelson 1990; Bouwer 1994; Robertson and Alexander 1996), recent chlororespiration 

investigations have been performed in the presence of non-aqueous phase PCE (Adamson et al. 2004; 

Carr et al. 2000; Cope and Hughes 2001; Dennis et al. 2003; Nielsen and Keasling 1999; Sung et al. 

2003; Yang and McCarty 2000, 2002).  Nielsen and Keasling (1999) demonstrated complete reductive 

dechlorination (e.g., ethene formation) at saturated PCE concentrations in batch systems with a 

dechlorinating consortium.  The majority of reducing equivalents from the electron donor (glucose) 

was consumed in reductive dechlorination probably due to the inhibition of other microbial processes 

by the high chloroethene concentrations.  Yang and McCarty (2000) also reported degradation of PCE 

in batch systems where concentrations of PCE approached the aqueous solubility limit.  Although 

dechlorination stalled at cis-DCE, incomplete dechlorination could still be beneficial for source-zone 

bioremediation because (1) dissolution rates are enhanced three- (Yang and McCarty 2002, 2003) to 

six-fold (Cope and Hughes 2001), and (2) cis-DCE and VC are more accessible to aerobic degradation 
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in down-gradient aerobic zones (Coleman et al. 2002a, 2002b).  In column studies, a nonuniform 

distribution of NAPL and organisms resulted in significant competition for reducing equivalents and 

bioclogging due to excessive microbial growth of non-dechlorinating biomass (Yang and McCarty 

2002).  Competition and bioclogging may be controlled by slow release electron donors.  However, 

application of a simplified numerical model suggested that under electron donor limiting conditions, a 

biofilm develops around the NAPL, reducing dissolution and increasing the difficulty of supplying 

sufficient electron donor (Chu et al. 2003).  Partitioning of lesser chlorinated ethenes (TCE, cis-DCE, 

VC) into PCE-DNAPL and decreases in pH due to the release of HCl have also been observed, and 

may impact the dechlorination of the lesser chlorinated ethenes (Adamson et al. 2004;  Cope and 

Hughes 2001). 

These findings have important ramifications for source-zone bioremediation, as well as post-

treatment biopolishing.  Although a variety of organisms are capable of PCE-to-cis-DCE 

dechlorination, complete detoxification requires the presence and activity of Dehalococcoides 

populations (Ritalahti et al. 2001; Hendrickson et al. 2002).  Contaminant removal and plume 

containment following bioaugmentation with Dehalococcoides-containing cultures has been 

demonstrated in the field (Ellis et al. 2000; Lendvay et al. 2003; Major et al. 2002), and recent results 

suggest that bioaugmentation is also a viable approach for initiation of reductive dechlorination in PCE 

source zones (Adamson et al. 2003).  These findings suggest that combined bioaugmentation strategies 

that (i) initiate the reductive dechlorination process in source zones (Adamson et al. 2003) following 

physical-chemical treatment, and (ii) establish bioreactive barriers for treatment of dissolved 

contaminants down-gradient (Lendvay et al. 2003) are promising remediation approaches that warrant 

further exploration.   

To sustain the reductive dechlorination process, a source of reducing equivalents (i.e., an 

electron donor) must be provided.  Chlororespiring populations depend on the activity of fermentative 

organisms to convert (complex) organic materials into suitable electron donors (e.g., hydrogen or 
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acetate) (DiStefano et al. 1992; He et al. 2002).  A variety of substrates including pentanol, ethanol, 

lactate, propionate, butyrate, and oleate have been shown to produce suitable electron donors (e.g., 

acetate, hydrogen) to support chlororespiring populations (Carr and Hughes 1998; Fennell and Gossett, 

1998; He et al. 2002; Yang and McCarty 1998, 2002).  Alternative amendment strategies that supply 

slow-release, non-soluble substrates (e.g., olive oil, chitin, polylactate esters [e.g., HRC]) have also 

been successfully used  (Koenigsberg and Farone 1999; Yang and MacCarty 2002).  Chlororespiring 

populations are highly competitive hydrogen utilizers, and outcompete methanogens, acetogens, and 

sulfate-reducing populations for this electron donor (Löffler et al. 1999). Thus, substrates that result in 

slow release (or production) of hydrogen are advantageous because the majority of reducing 

equivalents is directed towards the process of interest (Ballapragada et al. 1997; Fennell et al. 1997; 

Fennell and Gossett 1998; He et al. 2002; Smatlak et al. 1996).   It should be noted that any approach 

that increases the flux of hydrogen in a subsurface environment will also result in an increased flux of 

acetate, which has been implicated as a relevant source of low concentrations of hydrogen through 

syntrophic oxidation (He et al. 2002; Schink 1997). 

 

Physical-Chemical Treatment of Chlorinated Solvent Source Zones 

Over the past decade, a number of innovative technologies have been developed that show 

promise for recovering a large fraction of the DNAPL mass at a given site (e.g., Brusseau et al. 1999; 

Stroo et al. 2003).  Although the number of field-scale demonstrations of these technologies is 

growing, more standardization of assessment and reporting of results are necessary before larger-scale 

implementations can be considered sound practice (NRC 1997).  Furthermore, the lack of consensus 

pertaining to the potential benefits of partial source-zone removal (e.g., Rao et al. 2002; Rao and 

Jawitz 2003; Sale and McWhorter 2001) points to the need for a better understanding of the long-term 

influence of physical-chemical treatment on contaminant fluxes, plume development, and enhanced 

microbial activity.   
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Given that innovative source-zone removal technologies have been extensively documented 

(e.g., NRC 1994, 1997, 1999), this paper will offer only a brief summary of selected approaches 

including air sparging, chemical oxidation, thermal treatment, co-solvent flushing, and surfactant-

enhanced aquifer remediation.  Application of any of these treatment technologies would require 

detailed site characterization, a well-delineated source-zone, and in most cases, efficient contact 

between injected fluids and DNAPL.  The discussion below focuses on assessing the potential for 

coupling each technology with microbial reductive dechlorination.   

 

Air Sparging.  A source-zone remediation technology that has been implemented at many DNAPL 

contaminated sites is air sparging (NRC 1997, see Brown 1997; Hinchee 1994; Johnson et al. 1993; 

Reddy et al. 1995; Suthersan 1996 for more detailed descriptions and reviews of air sparging 

technologies).  Air is injected below the water table to volatilize or strip contaminants from 

groundwater (see Figure 2).  The vapor-phase contaminant rises into the unsaturated zone where it can 

then be extracted with a soil vapor extraction system (Johnson et al. 1993).  Typically, design of these 

systems is empirical and based upon two primary assumptions: (1) the gas phase will contact the non-

aqueous phase, resulting in direct mass transfer from the DNAPL to the vapor phase, and (2) the gas 

phase will strip dissolved contaminants from the aqueous phase (Suthersan 1997; Unger et al. 1995).   

While air sparging may be applied to reduce DNAPL mass (Unger et al. 1995), concerns 

remain that the introduction of air to a source zone may increase the extent of contamination through 

lateral and vertical spreading of NAPL (Blanford et al. 1999; Henry et al. 2003).  Air sparging has 

been reported to stimulate aerobic microbial processes including cometabolism of chlorinated ethenes 

as long as a suitable primary substrate is present (Gierke et al. 1999; Johnson et al. 1993; Raes et al. 

2002).  Sustained enhanced aerobic biodegradation however, may be problematic as aerobic 

degradation of unsaturated chlorinated solvents is limited at the high contaminant concentrations 

commonly found within DNAPL source zones (Alvarez-Cohen and McCarty 1991).  The 
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implementation of the aerobic cometabolic process has been successfully demonstrated for TCE 

removal under field conditions (McCarty et al. 1998), however the requirement for a primary substrate 

(e.g., toluene) remains problematic.  Although lower chlorinated ethenes (e.g., cis-DCE and VC) are 

amenable to growth- linked microbial degradation under aerobic conditions, a metabolic process 

capable of oxidizing PCE and TCE has yet to be identified (Löffler et al. 2003).  For these reasons it is 

unlikely that stimulation of reductive dechlorination following air sparging is a viable approach.     

 

Chemical Oxidation.  In situ chemical oxidation (ISCO) was developed to transform contaminants into 

benign products (i.e., CO2 and salts) (see NRC 1999 and Siegrist et al. 2001 for mechanistic 

descriptions of ISCO technologies).  A common form of this technology involves the injection of 

hydrogen peroxide (~10% to 50% by weight) in conjunction with an iron catalyst (e.g., ferrous sulfate), 

which forms highly reactive hydroxyl radicals (OH•) via Fenton’s chemistry.  The hydroxyl radicals 

are strong oxidants and react rapidly with surrounding molecules.  Solutions of hydrogen peroxide, 

without catalyst, have been introduced into the subsurface (Oberle and Schroder 2000) to reduce iron 

catalyst requirements and the need for pH adjustments.  However, hydrogen peroxide at ambient 

temperature and pressure is a relatively poor oxidizing agent for chlorinated solvents.  When hydrogen 

peroxide solutions are injected alone (i.e., without an iron catalyst) reductions in contaminant 

concentrations are frequently the result of volatilization or stripping, which occurs due to increased 

temperature and O2 production as the hydrogen peroxide decomposes (Oberle and Schroder 2000).  

Permanganate, in the form of either NaMnO4 or KMnO4, offers an attractive alternative to Fenton’s 

chemistry as it does not rely on the formation and transport of short- lived OH• radicals.  The use of 

permanganate, however, results in the formation of MnO2, which may precipitate and reduce aquifer 

permeability (Dai and Reitsma 2002; Li and Schwartz 2003; Siegrist et al. 2001).  The potential for 

permeability reduction, as well as increased metal mobility, that may accompany use of chemical 

oxidants, depends upon site specific geochemical conditions.  Thus, as with all source-zone treatment 
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technologies, thorough site characterization is required to mitigate potential adverse effects (Crimi and 

Siegrist 2003; Siegrist et al. 2001).   

Application of chemical oxidation to DNAPL source zones (Figure 3) has produced mixed 

results (Siegrist et al. 2001; Urynowicz and Siegrist 2000).  Still, some evidence suggests 

permanganate oxidation of DNAPLs may be plausible if delivery of chemical oxidants to DNAPL 

mass can be improved (Nelson et al. 2001; Schnarr et al. 1998; West et al. 1998), and MnO2 crusting 

of the DNAPL avoided (Dia and Reitsma 2002; Li and Schwartz 2003; Siegrist el al. 2001).  These 

issues notwithstanding, the fate of microorganisms through the oxidation process remains unclear 

(Bassel and Nelson 2000; Kastner et al. 2000).  While a limited number of studies indicate both 

aerobic and anaerobic populations may rebound following treatment with relatively low concentrations 

(<2% wt) of oxidants (e.g., Allen and Reardon 2000), the post-treatment environment may have pH 

levels that are unfavorable for microbial activity depending upon site conditions (Kastner et al. 2000, 

Siegrist et al. 2001).  Additionally, permanganate residuals in the source zone, or oxygen produced 

during treatment is likely to maintain oxidative conditions, which prohibit reductive dechlorination of 

chloroethenes.      

 

Thermal Treatment.  Thermal treatment techniques include steam (or hot water) flooding, resistive 

heating (e.g., three- or six-phase heating), conductive heating (e.g., thermal blankets), or some 

combination thereof (more detailed descriptions of several thermal technologies may be found in Falta 

2000; NRC 1999; Udell 1997).  Of these technologies, steam flushing is frequently employed for 

treatment of sites contaminated with NAPL (see Figure 4).  Laboratory and field tests have 

demonstrated the robustness of steam flushing (Udell 1997).  There are, however, two drawbacks 

limiting widespread implementation: 1) energy demands contribute significantly to project costs 

(Henry et al. 2003) and 2) the potential for NAPL mobilization (Davis and Heron 1998; Falta 2000).  

During steam flushing, DNAPL mobilization occurs through a reduction in capillary forces at the 
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condensation front, and may become problematic if the recondensed organic liquid phase escapes 

hydraulic control and contaminates pristine regions of the subsurface.  Thus, recent work focused on 

designs that reduce the potential for downward migration of DNAPLs during steam flooding (Kaslusky 

and Udell 2002).  Lesser understood impacts of steam treatment include the potential formation of 

intermediates or byproducts during thermal degradation (Cai and Guengerich 1999; Davis and Heron 

1998; Kline et al. 1978; McKinney et al. 1955), and effects of steam and high temperatures on the 

microbial community (Davis 1998; Richardson et al. 2002).   

Long-term monitoring efforts provide limited evidence that microbial activity may rebound 

following field-scale steam treatment (Smith et al. 1998, 2000).  Richardson et al. (2002) found that 

mesophilic bacterial and archaeal populations survived steam treatment in laboratory studies using 

soils collected from contaminated sites.  In their study microbial activity was only detectable after 

periods of gradual cooling; elevated temperatures and fast cooling rates resulted in little or no 

microbial activity.  In situ rates of cooling are anticipated to be slow enough to allow subsequent 

microbial rebound (Richardson et al. 2002).  Thorough characterization of the subsurface environment 

following thermal treatment of DNAPL source zones has yet to be reported, but it is likely that the 

treated zone immediately following steam or hot water injection will be aerobic, given that air may be 

injected during treatment for the purposes of contaminant oxidation (Leif et al. 1998) or DNAPL 

mobility control (Kaslusky and Udell 2002).  In contrast, redox potentials measured at a site following 

electrical resistive heating were found to be consistent with those required for reductive dechlorination 

(Beyke et al. 2000; Smith et al.  2000).  Therefore, additional research is required to determine the 

effectiveness of employing microbial reductive dechlorination following thermal treatment of DNAPL 

source zones. 

 

Co-Solvent Flushing.  Alcohols have been utilized as co-solvents to enhance recovery of NAPLs 

through either solubilization or mobilization (displacement) (Figure 4, see AATDF 1997; Augustijin et 
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al. 1997; Falta 1998 for description of the mechanisms and implementation of co-solvent flushing 

technologies).  During solubilization, NAPL remains relatively immobile throughout recovery.  In 

contrast, mobilization relies upon reduced capillary forces resulting from a decrease in interfacial 

tension to facilitate release and displacement of NAPL ganglia, which are recovered as an organic 

liquid or free product.  While mobilization and solubilization are not mutually exclusive processes, co-

solvent floods may be designed to favor either mechanism through a detailed understanding of system 

phase behavior (Brandes and Farley 1993; Falta 1998).  Although selection of alcohols to promote 

partitioning leading to reductions in the density difference between phases (e.g., Lunn and Kueper 

1999) can mitigate downward migration of DNAPL, field implementation of mobilization co-solvent 

floods have been limited to the treatment of LNAPL source zones (Falta et al. 1999).  Other field tests 

employing the use of co-solvents focused on enhanced removal through solubilization (Rao et al. 1997; 

Jawitz et al. 2000).  Use of high concentrations of alcohols (>70%) in co-solvent flushing may result in 

gravity override (bypassing) and reduced source-zone bioactivity.  Gravity override can be limited with 

careful design of injection systems to counter buoyancy forces (Jawitz et al. 2000).  Although flushing 

with concentrated alcohol solutions may negatively impact microbial activity, long-term monitoring 

results (>3 years) from a site where co-solvent flushing was employed suggest that general bioactivity 

may rebound as alcohol concentrations decrease (Annable 2003; Mravik et al. 2003).  It is unclear, 

however, how the populations critical to reductive dechlorination respond to alcohol flushing.  In 

general, if harmful impacts on the microbial community can be avoided, or are shown to be less 

disruptive than currently perceived, the addition of short chain alcohols such as ethanol may prove to 

be a feasible method for stimulating post-treatment reductive dechlorination.   

 

Surfactant-Enhanced Aquifer Remediation.  Surfactant enhanced aquifer remediation (SEAR) refers to 

in situ flushing technologies that utilize surfactants to overcome many of the limitations experienced 

during pump-and-treat remediation of DNAPL source-zones (Figure 4, mechanistic and practicable 
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descriptions of SEAR include: AATDF 1997; Jafvert 1996; Pennell and Abriola 1997).  Generally, 

surfactants are molecules that preferentially accumulate at surfaces or interfaces based upon their 

amphiphilic molecular structure.  Both anionic and non-ionic surfactants have demonstrated potential 

for use in NAPL-contaminated aquifer remediation (Baran et al. 1994; Dwarakanath et al. 1999; 

Pennell et al. 1993; Shiau et al. 1994).  SEAR technologies are similar to co-solvent flushing in that the 

general mechanisms of source-zone mass removal are solubilization and mobilization (Figure 4 inset).  

As is the case with most aggressive remediation approaches, SEAR leverages greater upfront capital 

expenditures than traditional pump-and-treat remediation for higher efficiency.  Upwards of 90% 

recovery of contaminant mass has been demonstrated within DNAPL source zones in short time 

periods at the field scale (Abriola et al. 2002; Londergan et al. 2001; Ramsburg et al. submitted-a).  

The efficiency of SEAR makes it an attractive alternative to pump-and-treat remediation where 

hydraulic control allows for near complete capture of injected surfactant.  One drawback to the use of 

surfactant solutions designed for high contaminant solubilization is the possibility of downward 

migration of the relatively dense solubilized plume or mobilized free-product DNAPL prior to 

recovery.  Plume plunging behavior, however, may be mitigated through the addition of alcohols to the 

surfactant solution (Kostarelos et al. 1998) and careful design of the hydraulic flow regime/control 

system (Abriola et al. 2002; Abriola et al. submitted).  Concerns over downward migration of 

mobilized DNAPL may be alleviated by utilizing SEAR technologies that reduce DNAPL density in 

situ prior to mobilization (Ramsburg et al. 2003; Ramsburg and Pennell 2002; Yan et al. 2003)   

Use of readily biodegradable, food-grade surfactants minimizes concerns over the fate of 

unrecovered surfactant, yet the effect of such surfactants on microbial populations responsible for 

reductive dechlorination within the swept zone is only now beginning to be explored.  While most 

anionic and nonionic surfactants considered for application are completely degradable under aerobic 

conditions (Swisher 1987), degradation of alkylphenol ethoxylates(e.g., Triton X-100) has been shown 

to generate products (e.g., alkylphenols) which are persistent, toxic and estrogenic (e.g., Ahel et al. 
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1994a, 1994b; Stephanou and Geiger 1982; White et al. 1994).  Residual levels of readily degradable, 

food-grade surfactants, however, will likely promote the establishment of anaerobiosis, potentially 

facilitating conditions conducive for reductive dechlorination.  

Application of biodegradable anionic surfactants at field sites has typically been accompanied 

by high concentrations of 2-propanol (~40 g/L) and sodium chloride (as high as 7 g/L) to increase 

contaminant solubilization capacities upwards of 60 g/L (e.g., Brown et al. 1999).  Thus, post-

treatment conditions will likely have elevated concentrations of anionic surfactant, alcohol and sodium 

chloride, which could inhibit or prevent microbial activity.  Unfortunately, no long-term monitoring 

results have been reported, limiting our understanding of microbial activity following treatment with 

these formulations.  In contrast, long term monitoring results from a field test conducted using a 

biodegradable, food-grade, nonionic surfactant (without alcohol or salt addition) indicate that 

surfactant degradation stimulated microbial activity within the treated source zone (Abriola et al. 2003; 

Ramsburg et al. submitted-b). 

  

Implications for Coupling Physical-Chemical Treatment with Microbial Reductive Dechlorination.  

Existing evidence suggests certain physical-chemical source-zone treatment technologies are more 

promising for the stimulation of microbial activity as a post-treatment polishing step.  While air 

sparging, chemical oxidation, and steam flooding may generate an aerobic environment suitable for 

subsequent metabolic or co-metabolic oxidation, SEAR and co-solvent flushing appear to be the most 

promising phys ical-chemical treatments for integration with the microbial reductive dechlorination 

process.  Note that in this assessment the possibility that DNAPL contaminant distributions resulting 

from aggressive treatment may be technology specific has not been considered due to the scarcity of 

data.  Residual alcohol or surfactant solutions contribute to oxygen depletion and establishment of 

anaerobic conditions following aggressive treatment.  Further, residual flushing solution may serve as 

a source of reducing equivalents, and stimulate the reductive dechlorination process.  Although other 
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technologies may eventually be successfully integrated with post-treatment microbial reductive 

dechlorination, SEAR seems particularly applicable due to limited toxicity on the microbial 

community, the establishment of reducing conditions, and the release of reducing equivalents for 

stimulation of the reductive dechlorination process.  Thus, the ultimate fate of the residual surfactant 

solution and its effect on the dechlorinating population must be considered.   

While microbial degradation of surfactants in aerobic environments is well documented 

(Swisher 1987), it is uncertain how surfactants typically selected for SEAR are degraded in anaerobic 

environments.  Linear alcohol ethoxylates are degraded to fermentable substrates under anaerobic 

conditions (Huber et al. 2000), and the degradation of nonionic surfactant has been reported under 

methanogenic conditions (Yeh et al. 1999).  It is, therefore, likely that fermentation of unrecovered 

surfactant will serve as an indirect source of reducing equivalents by producing hydrogen and organic 

acids, whose slow anaerobic oxidation will generate additional hydrogen to support the chlororespiring 

populations.   

The residual surfactant concentrations, however, may also alter the bioavailability of a 

contaminant (Colores et al. 2000; Pennell et al. 2001; Rouse et al. 1994).  Yeh et al. (1999) 

investigated the bioavailability of hexachlorobenzene (HCB) in the presence of nonionic, ethoxylated 

sorbitan surfactants (i.e., Tween series) in a methanogenic mixed culture obtained from contaminated 

sediment.  At low surfactant concentrations (<10 mg/L) there was no apparent change in rate or extent 

of HCB dechlorination.  At a surfactant concentrations above the critical micelle concentration (CMC) 

enhanced HCB dissolution occurred, and although dechlorination rates decreased, the dechlorination 

endpoint remained unchanged.  Complete inhibition of reductive dechlorination was observed at a 

surfactant concentration of 1,000 mg/L.   However, Yeh et al. (1999) hypothesized that the observed 

inhibition was likely due to toxic effects of high surfactant concentrations rather than micellar 

sequestration of HCB.  These results are supported by a recent study using a PCE dechlorinating 

consortium and a matrix of anionic, nonionic, and cationic surfactants (McGuire and Hughes 2003).  
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McGuire and Hughes (2003) observed that the nonionic surfactant Tween 80 (polyoxyethylene (20) 

sorbitan monooleate) exhibited the least impact on dechlorination (both rate and extent), and thus 

speculated that the number of ethylene oxide groups present on the surfactant molecule impacts 

surfactant toxicity.   In fact, Bury and Miller (1993) and Guha et al. (1998) demonstrated that 

contaminants (in these studies nonchlorinated hydrocarbons) sequestered in the micellar phase may 

remain bioavailable.  The response of the dechlorinating microbial community to surfactants is poorly 

understood, and future research should explore possible stimulatory or inhibitory effects in a 

heterogeneous environment where local surfactant concentrations may be well above the CMC. 

 

Mathematical Assessment 

Although biological reduction of PCE in DNAPL source zones may be feasible, the relatively 

low dissolution enhancement factors (three- to six-fold) reported imply that source longevity would 

still be measured in multiple decades.  Alternatively, if uncertainties in the source zone microbial 

environment following physical-chemical treatment can be overcome, multiple order-of-magnitude 

reductions in source-zone mass removal obtained via active physical-chemical treatment might be 

combined with post-treatment biopolishing to substant ially reduce source longevity.  Ultimately, it 

may be possible to devise a post-treatment source-zone strategy that minimizes operations and 

maintenance efforts while still meeting regulatory standards at down-gradient points of compliance.  

 The potential benefits of tailoring physical-chemical treatments to stimulate microbial reductive 

dechlorination may be illustrated through a straightforward mathematical modeling analysis that 

compares source longevity for four hypothetical DNAPL source-zone scenarios (Figure 5) under three 

management strategies: (1) natural gradient dissolution (natural dissolution), (2) enhanced reductive 

dechlorination (source-zone bioremediation), and (3) physical-chemical treatment followed by source-

zone biopolishing (SEAR + enhanced reductive dechlorination).  The four hypothetical field scenarios 

were selected to span the range of behavior that may be expected in the field and are characterized by a 
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ganglia-to-pool (GTP) ratio, which is a measure of the distribution of mass between low saturation 

ganglia regions and high saturation pool regions in the source zone.  The formation properties, spill 

scenario, and SEAR characteristics were taken from a recent numerical modeling study that was based 

on a pilot-scale SEAR demonstration at the Bachman Road site in Oscoda, MI (Abriola et al. 

submitted; Lemke and Abriola 2003; Lemke et al. 2004).  These properties are summarized in Table 2.  

Scenario 1 assumes NAPL is entrapped as residual globules and ganglia at a uniform saturation 

throughout the source zone (Figure 5a).  This scenario has an infinite ganglia-to-pool ratio (IGP) and 

would be characteristic of an ideal site that had perfectly uniform hydraulic properties and where 

DNAPL was released over a reasonably wide area.  Cleanup of this site is modeled using a simplified 

hydraulic approach (Brusseau 1996), which is based on mass-balance calculations.  Scenario 2 is 

perhaps more realistic.  It is representative of a situation with the NAPL entrapped as residual ganglia 

(Figure 5b), though some pooling has occurred due to permeability contrasts (high ganglia-to-pool 

ratio (HGP), GTP greater than 1.0).  This DNAPL saturation distribution was generated following the 

methods outlined by Lemke and Abriola (2003) and Lemke et al. (2004).  Using this methodology, the 

release of NAPL into a nonuniform permeability field is simulated using an laboratory-validated 

numerical multiphase simulator – MVALOR (Dekker and Abriola 2000; Lemke et al. 2003; Rathfelder 

et al. 2001).  Natural dissolution or surfactant enhanced aquifer remediation is then simulated using a 

separate numerical simulator (MISER) that has been used to accurately simulate SEAR in laboratory 

experiments (Rathfelder et al. 2000, 2001), and was used in the design of a recent SEAR pilot-scale 

test (Abriola et al., 2002, submitted).  Scenario 3 was also generated using this same methodology 

(Figure 5c).  Here, however, formation properties were configured so that the resultant saturation 

distribution was dominated by pools (low ganglia-to-pool ratio (LGP), GTP less than 1.0) (see Lemke 

et al. (2004) for details).  Scenario 4 assumes all mass is immobilized in six idealized, rectangular, 

fully saturated (Sn = 1) pools with no ganglia remaining (Figure 5d).  This scenario is an extreme case 

where the ganglia-to-pool ratio is equal to zero (ZGP).  Cleanup in this scenario was modeled using an 
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analytical solution to the 2D advection-dispersion equation following the methods of Johnson and 

Pankow (1992).  It should be noted that, in contrast to the HGP and LGP scenarios (1 and 4), which 

result from the utilization of numerical models that incorporate more of the physics of the problem 

(e.g., hysteretic DNAPL migration, nonuniform flow, rate-limited dissolution) the IGP and ZGP 

scenarios are non-physical, idealized end-members intended to bracket behavior that may be observed 

in the field.  Although the distribution of mass in the source-zone is different in each of the four 

scenarios, the amounts of mass in the source zone, the source-zone (i.e., domain) volume, the aqueous-

phase contaminant solubility during a given process (i.e., SEAR or natural gradient dissolution), and 

the average hydraulic flux through the source zone are identical. 

 The source longevity in Scenarios 1-4 using each of the three remediation strategies was 

arbitrarily defined as the time when 99.9% NAPL was removed from the source zone.  The second and 

third management strategies, source-zone bioremediation and SEAR + biopolishing, used a simplified 

bioenhancement factor taken from the literature to quantify the improvement in dissolution due to 

microbially mediated aqueous-phase degradation.  Reductive dechlorination enhanced-dissolution 

factors ranging from three- to six-fold have been reported (Cope and Hughes 2001; Yang and McCarty 

2002).   For this simplified example an enhancement factor of five was assumed.  This enhancement 

factor was reported in column studies in which NAPL ganglia were uniformly distributed, 

chlororespirers were present and active, and there were no limitations on microbial growth (Yang and 

McCarty 2000; Cope and Hughes 2001).  It is unlikely that these conditions could be obtained at real 

sites and thus, the enhancement factor of five is likely optimistic.  However, in an effort to determine 

the benefits of aggressive mass removal prior to source-zone biopolishing (management strategy 3) 

versus bioremediation alone, favorable source-zone bioremediation (management strategy 2) was 

assumed.   

Calculated values of source longevity for each of the three management strategies for all 4 

scenarios are reported in Table 3, and percent mass removal as a function of time is presented in Figure 
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6.  As might be expected, source longevity for Scenario 1 (IGP) and Scenario 4 (ZGP) tend to bracket 

the cleanup behavior of the more complex scenarios (HGP & LGP).  Application of physical-chemical 

source-zone treatment (a 10-day surfactant flush of 4% Tween 80) prior to biopolishing is shown to 

reduce the source longevity regardless of scenario conditions.  The magnitude of this reduction, 

however, depends on the level of pooling in the NAPL source zone (Figure 6a).  If, for example, the 

LGP scenario is assumed to be representative of a typical small-scale site, the 10-day SEAR followed 

by biopolishing will result in a 53% and 91% decrease in source longevity, in comparison with results 

of source-zone reductive dechlorination alone and natural dissolution conditions, respectively (Figure 

6b).  In this scenario, conducting SEAR operations for an additional 15 days (25 days total) would 

result in removal of 98.5% of the DNAPL mass thereby reducing source longevity to four years.  Thus, 

results presented in Table 3 and Figure 6 suggest that physical-chemical treatment followed by 

enhanced microbial activity could greatly reduce source longevity and associated long-term risk. 

 

Bachman and Sages 

 The co-solvent flood at the former Sages dry cleaning facility (Jacksonville, FL) and the 

Bachman Road SEAR site (Oscoda, MI) serve as documented case studies where field evidence 

supports the conclusion that physical-chemical source-zone removal may be coupled with reductive 

dechlorination.  A comparison between observations at the Sages and Bachman sites is shown in Table 

4.  It is important to recognize that these post-treatment monitoring data provide only a snapshot of 

conditions (at 1280 day for Sages and 450 day for Bachman) in a transient environment.  While the 

evolutions of the conditions at the Sages and Bachman sites are described in more detail in Mravik et 

al. (2003) and Ramsburg et al. submitted-b, respectively, the summary herein, facilitates analysis of the 

observed stimulation of microbial reductive dechlorination following physical-chemical treatment.   

At the Sages site, 34,000 L of a solution consisting of 95% (vol) ethanol and 5% (vol) water 

were flushed through a DNAPL source zone over a period of 3.5 days followed by a 4.5 day water 
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flood used to recover injected fluids (Jawitz et al. 2000).  This co-solvent flood was successful in 

removing 43 L of PCE-DNAPL from the subsurface, and extraction well data indicate 92% of the 

ethanol introduced during the flush was recovered (Jawitz et al. 2000).  Post-treatment characterization 

conducted approximately one month following the cessation of flushing activities indicated that 

DNAPL remained following treatment (Sillan 1999) and that the average PCE and ethano l 

concentrations in the extraction wells were ~ 120 µM and ~230 mM, respectively (Mravik et al.  

2003).  Results from longer term sampling at the Sages site indicate that PCE concentrations within the 

source-zone rebounded to pre-treatment levels approximately 150 days after treatment and that ethanol 

concentrations remained in excess of 160 mM for approximately 350 days (Mravik et al. 2003).  

Although ethanol toxicity remains a concern, elevated concentrations of hydrogen and acetate within 

the treated zone suggest microbial activity (Mravik et al. 2003).  Soil samples taken from a core 

collected down-gradient of the Sages treated zone tested positive when analyzed via nested PCR with 

Dehalococcoides-targeted primers (Mravik et al. 2003).  Additionally, mic rocosm studies with aquifer 

material from the Sages site indicate sulfate reducing and methanogenic populations rebounded 

following exposure to elevated concentrations of ethanol (Lindner et al. 2002).  While the survival and 

activity of dechlorinating populations within the treated zone has not been demonstrated to date, 

observations of significant cis-DCE production (up to 242 µM) at monitoring points located within the 

treated zone are indicative of microbial reductive dechlorination.   

At the Bachman Road site, a pilot-scale field demonstration of SEAR was conducted to remove 

PCE-DNAPL from beneath a former dry cleaning facility.  For this source-zone treatment, 68,400 L of 

an aqueous solution containing 6% (wt) Tween 80 were introduced over a period of 10 days, with two 

additional days of active water flooding (Abriola et al. 2002, Abriola et al. submitted; Ramsburg et al. 

submitted-a).  Approximately 95% of the injected surfactant was recovered along with over 19 L of 

PCE.  Post-treatment site monitoring indicate that PCE concentrations were reduced by two orders-of-
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magnitude from pre-treatment levels at many locations within the treated zone, and in contrast to the 

Sages site, did not rebound after 450 days (Abriola et al. 2003; Ramsburg et al. submitted-b).  

Surfactant concentrations decreased steadily over time, and after 270 days, surfactant was not 

detectable at most sampling points within the treated zone (12 µM detection limit).   

Prior to the SEAR treatment, substantial reductive dechlorination had not occurred in the 

source-zone.  However, significant concentrations of PCE degradation products were measured within 

the treated zone 270 days after treatment (Table 4).  Acetate and formate, likely products of Tween 80 

fermentation, were observed at levels as high as 4600 µM, and are indicative of anaerobic microbial 

degradation of the surfactant (Abriola et al. 2003, Ramsburg et al. submitted-b).  Organic acids are 

known to support reductively dechlorinating populations present in the Bachman aquifer (He et al. 

2002, 2003a, 2003b, Sung et al. 2003), and PCE to cis-DCE transformation within the treated source-

zone is consistent with laboratory microcosm studies conducted with aquifer material from the 

Bachman Road site (He et al. 2002).  Vinyl chloride, however, was only detected at three out of 26 

sampling locations within the source zone.  The apparent accumulation of cis-DCE at most observation 

locations may indicate that PCE to cis-DCE degrading organisms are predominating within the treated 

zone.    

These two examples from field sites suggest that physical-chemical source-zone treatments are 

capable of stimulating organisms responsible for degrading residual level contaminants.  At these sites, 

data support the conclusion that ethanol and Tween 80 were metabolized by active microbial 

communities resulting in an increased production of hydrogen and acetate.  The availability of these 

electron donors, in turn, promoted reductive dechlorination activity.  While such enhanced bioactivity 

within source zones may occur at sites contaminated on much larger scales (e.g., Hill Air Force Base, 

Londergan et al. 2001), it is important to recognize that sites such as Sages and Bachman are 

representative of numerous small-scale chloroethene source zones existing in communities across the 
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United States (e.g., SCRD 2004).  These smaller sites are not only significant sources of dissolved 

phase contamination, they are often more problematic because: 1) they typically occur in proximity to 

areas of higher population, increasing risk and limiting hydraulic isolation (i.e., containment) options, 

and 2) the relatively low NAPL saturations and smaller treated volumes at these sites increase 

treatment costs as quantified by conventional metrics ($/m3 of treated soil or $/L NAPL recovered).  

Higher costs per volume (treated soil or NAPL) result from a threshold cost associated with 

establishing a treatment system regardless of site size.  Many innovative source-zone technologies 

offer efficient mass removal at the expense of greater, up-front capital expenditures (Rao et al. 2002).  

Decreased source longevity resulting from aggressive treatment, however, results in lower operational 

and maintenance (O&M) costs making many innovative approaches economically viable when 

compared against long-term pump-and-treat remediation (e.g., Ramsburg and Pennell 2001).  A staged 

treatment approach which employs  microbial reductive dechlorination following aggressive mass 

removal may thus provide a cost-effective option for reduction of both source longevity and risk.   

The need for integrating treatment technologies for groundwater cleanup has become more 

apparent (Jackson 2003; Rao et al. 2002) since first being advocated by the National Research Council 

(NRC) Committee on Ground Water Clean-up Alternatives (NRC 1994).  Thorough site 

characterization is critical for design of any treatment train remedy (Jackson 2003).  Site specific 

tailoring of physical-chemical treatment for stimulation of post-treatment bioactivity must be based 

upon an accurate understanding of the location and extent of DNAPL, as well as hydrogeology and 

pre-treatment microbial parameters.  Co-solvent and surfactant flushing are very promising approaches 

because they can be tailored to enhance post-treatment reductive dechlorination.  It should be noted, 

however, that ISCO may provide another means of polishing of residual- level contamination 

subsequent to other source-zone remediation technologies.  Additionally, ISCO may be an attractive 

follow-on treatment alternative at sites where characterization efforts demonstrate that dechlorinating 

populations cannot be readily stimulated or augmented.   
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Conclusions  

Taken in total, literature data, example calculations, and case studies presented above support a 

position of cautious optimism regarding the potential of combined physical-chemical/reductive 

dechlorination remedial methods for the effective treatment of chlorinated solvent source zones.  The 

literature review, however, suggests a number of areas requiring further investigation before the 

performance of such methods can be fully assessed and optimized.  Given the number of remediation 

sites at which natural attenuation of chlorinated solvents has been documented (Wiedemeier et al. 

1999), and the knowledge that many of the flushing solutions themselves stimulate bioactivity in 

laboratory tests, one would anticipate that stimulation of indigenous microorganisms in a source zone 

following physical-chemical treatment would be common.  Therefore, the lack of widespread evidence 

for bioremediation following physical-chemical treatment indicates that either microbial activity is 

occurring but lacks documentation (e.g., the indicators of bioremediation are not monitored) or that the 

post-treatment environment does not favor microbial activity.   It is important that future field 

demonstrations of source-zone flushing technologies are designed to systematically investigate i) the 

source-zone (dechlorinating) microbial community, before, during, and following the treatment 

process, and ii) contaminant and transformation product concentration distributions following 

treatment.  Indeed, to date, most field observations of enhanced reductive dechlorination in treated 

source zones have been fortuitous, with little thought devoted to microbial processes in the initial 

design and implementation of the treatment monitoring scheme.  Specific culture-dependent (e.g., 

microcosms) and culture- independent (nucleic acid-based) tools for assessment of the microbial 

community are now available for this characterization effort (Hendrickson et al. 2002; He et al. 

2003a,b; Löffler et al. 2000; Morse et al. 1998).   

Future field demonstrations may also be enhanced through exploitation of results obtained from 

microbial laboratory investigations.  Laboratory-scale studies conducted under conditions 
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representative of a source-zone environment (i.e., in the presence of organic-liquid) provide heuristic, 

as well as quantitative, guidance for implementation of post-treatment bioremediation.  Substrate 

amendment strategies that favor chlororespiring populations by maintaining a low concentration of 

hydrogen may be adapted from the laboratory to the field.  However, additional work will be required 

to explore the effect of unrecovered flushing solutions (e.g., alcohol or surfactant) typical of a post-

treatment source-zone environment on the metabolism of chlorinated NAPLs by chlororespiring 

organisms.  The discovery of numerous dechlorinating populations capable of converting PCE to cis-

DCE and recognition of the importance of Dehalococcoides populations in the transformation of 

chloroethenes to ethene will likely improve future bioaugmentation strategies, and further enhance 

post-treatment biopolishing.  Although enhanced NAPL dissolution by partially dechlorinating 

populations has been demonstrated, it remains to be seen if complete detoxification (e.g., ethene 

formation) in source zones is feasible.   
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Table 2. Parameters used in example calculations  

Parameter Value Units Reference 

Values used in example calculations 

   PCE Spill Volume 0.096 m3 Lemke et al. (2004) 

   Spill radius (r) 0.797 m Lemke et al. (2004) 

   Spill depth (h) 8.315 m Lemke et al. (2004) 

   Average NAPL Saturation (So
AVG) 0.017 - Lemke et al. (2004) 

   Porosity (n) 0.36 - Lemke et al. (2004) 

   PCE Density (ρPCE) 1.623 x 106 g/m3 Verschueren (1983) 

   Rate- limited Aqueous-phase PCE  
   concentration (Caq

PCE)  
30 a g/m3 Abriola et al. (2002, 2003) 

   Length of surfactant flush 10 d Abriola et al. (2002, submitted) 

   Bioenhanced dissolution factor 5 a - 
Carr et al. (2000) 

Cope and Hughes (2001) 
 Yang and McCarty (2002) 

Apparent PCE concentration during 
SEAR (C) 5.4 x 103 g/m3 Abriola et al. (2002, submitted) 

   Groundwater Velocity (Vd) 0.032 m/d Lemke et al. (2004) 

   Groundwater Velocity during SEAR 0.514 m/d 
Abriola et al. (2002, submitted) 
Ramsburg et al. (submitted-a) 

   Pore volume 5.9 m3 calculated 

   Pool length (Lp) 1 m calculated 

   Pool depth  0.016 m calculated 

   Number of independent pools 6 - calculated 

   Vertical dispersivity (αv) 2.3 x 10-4 m Johnson and Pankow (1992) 

   Aqueous solubility of PCE 150 g/m3 Verschueren (1983) 

Equilibrium solubility of PCE in 
surfactant solution 26,880 b g/m3 Taylor et al. (2001) 

   PCE bulk aqueous phase diffusion      
   coefficient (Daq

PCE) 5.7 x 10-5 m2/d Dekker and Abriola (2000) 
a Assumed based upon range of reported values 
b From reported weight solubilization ratio of 0.672 g PCE per g surfactant (4% Tween 80 solution) 
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Table 3. Calculated source longevities in years  

Scenario 
Natural Gradient 
Dissolution (yr) 

Source-Zone 
Bioremediation (yr) a 

SEAR + 
Biopolishing (yr) 

1. Infinite Ganglia-to-Pool ratio (IGP) 36 7 0.01 b 

2. High Ganglia-to-Pool ratio (HGP) 54 11 0.01 b 

3. Low Ganglia-to-Pool ratio (LGP) 245 50 24 

4. Zero Ganglia-to-Pool ratio (ZGP) 817 163 157 
a Source-zone bioremediation calculations assume active chlororespiring organisms are present in 
sufficient numbers and no nutrient or substrate limitations for duration of treatment.  
b10-day SEAR (4% Tween) alone was sufficient for 99.9% removal of PCE-DNAPL mass 
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Table 4.  Comparison of key site parameters and monitoring data 
Site  Sages Ref. Bachman Ref. 
Site Characteristics 
   Location Jacksonville, FL (1) Oscoda, MI (4) 
   Former Site Usage Dry Cleaner (1) Dry Cleaner (4) 
   Primary Contaminant PCE (1) PCE (4) 
   Depth to Groundwater a 2.0-2.6 m (1) 2.4-3.0 m (4) 
   Depth to Confining Unit 10 m (1) 7.6 m (4) 
   Range of Hydraulic Conductivity b 3-6 m/d (1) 1-48 m/d (4) 

   Soil Classification Fine Grain Sands (1) Medium to Fine 
Grain Sands (4) 

   Areal Extent of Treated Zone 7.3 x 2.7 m (1) 4.3 x 6.7 m (4) 
   Estimated Overall NAPL Saturation 0.004 (1) 0.0004 (5) 

Maximum Observed PCE Aqueous 
Concentration Preceding Treatment 

710 µM (1) 600 µM (5) 

Management Strategy 
   Treatment Co-Solvent (1) SEAR (4) 
   Flushing Solution 95% (vol) Ethanol (1) 6% (wt) Tween 80 (5) 
   Volume of Solution Injected 34 kL (1) 68 kL (5) 

   Duration of Injection 3 day + 4.5 day 
waterflood 

(1) 10 day + 2 day 
waterflood 

(5) 

   Recovery of Active  Ingredient  92% (Ethanol) (1) 95% (Tween 80) (5) 
   PCE Mass Recovery 43 L (1) 19 L (5) 
   Unrecovered Active Ingredient 2000 kg (45 kmol) (3) 225 kg (0.17 kmol) (5) 
   Total Cost $440,000 (2) $350,000 (5) 
Monitoring     
   Post-Treatment Monitoring Period 1280 day (3) 450 day (6) 
   Range & (Median) of Concentrations within Treated Zone at Last Reported Monitoring c 

   PCE 50-150 (100) µM (3) 0.11-36 (0.38) µM (6) 
   TCE 10-30 (20) µM (3) 0.01-91 (0.09) µM (6) 
   cis-DCE  36-242 d (150) µM (3) 0.17-1032 (2.2) µM (6) 
   VC 0.07-13 d (2.0) µM (3) 0.02-6.6 (0.02) µM (6) 
   Ethene 0.04-0.43 d (0.20) µM (3) Not Measured (6) 
   Acetate 200-600 (400) µM (3) 100-4600 (100) µM (6) 

a varies seasonally, b range due to spatial variability within source zone, c values for the Sages site are estimated from 
kriged contours , d actual range (i.e., non-kriged range reported in Mravik et al. 2003) 
(1) Jawitz et al. 2000, (2) Sillan 1999, (3) Mravik et al. 2003, (4) Abriola et al. submitted, (5) Ramsburg et al. submitted-
a, (6) Ramsburg et al. submitted-b 
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List of Figures 

1.  Representative photograph from laboratory-scale (63.5 cm length x 38 cm height x 1.4 cm 
thickness) infiltration and entrapment PCE-DNAPL (dyed red with 10-4 M Oil-red-O for 
visualization).   
 
2.  Representation of air sparging with soil vapor extraction in a shallow, relatively 
homogeneous, unconfined aquifer with a well-defined DNAPL source zone.  Arrows represent 
tortuous air channels into which contaminants partition and are subsequently recovered through 
soil-vapor extraction wells. 
 
3. Representation of in situ chemical oxidation in a shallow, relatively homogeneous, unconfined 
aquifer with a well-defined DNAPL source zone.  Contaminant destruction occurs in situ as 
depicted by the representative chemical reaction.  Alternatively, implementation of ISCO 
technologies may utilize a point-to-point flood similar to that shown in Figure 4. 
 
4. Representation of subsurface flushing technologies in a shallow, relatively homogeneous, 
unconfined aquifer with a well-defined DNAPL source zone (generalized to include steam, co-
solvent and surfactant).  Insets represent DNAPL recovery mechanisms (top: mobilized bank of 
free product collecting DNAPL ganglia; bottom: reduction in entrapped DNAPL mass through 
solubilization). 
 
5.  Depiction of DNAPL source-zone conceptual models used in the example calculations: a) 
infinite ganglia-to-pool ratio (IGP), b) high ganglia-to-pool ratio (HGP), c) low ganglia-to-pool 
ratio (LGP), and d) zero ganglia-to-pool ratio (ZGP).  All control volumes are the same size and 
contain equal amounts of PCE-DNAPL.  

6.  Percent of DNAPL mass remaining as a function of time for (a) three alternative remediation 
strategies in LGP scenario and (b) SEAR followed by bioenhancement in all four scenarios. 
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